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What should researchers do when their baseline model is falsified? We recommend
reporting the set of parameters that are consistent with minimally nonfalsified models.
We call this the falsification adaptive set (FAS). This set generalizes the standard base-
line estimand to account for possible falsification. Importantly, it does not require the
researcher to select or calibrate sensitivity parameters. In the classical linear IV model
with multiple instruments, we show that the FAS has a simple closed-form expression
that only depends on a few 2SLS coefficients. We apply our results to an empirical study
of roads and trade. We show how the FAS complements traditional overidentification
tests by summarizing the variation in estimates obtained from alternative nonfalsified
models.

KEYWORDS: Instrumental variables, nonparametric identification, partial identifica-
tion, sensitivity analysis.

1. INTRODUCTION

MANY MODELS USED IN EMPIRICAL RESEARCH ARE FALSIFIABLE, in the sense that there
exists a population distribution of the observable data which is inconsistent with the
model. With finite samples, researchers often use specification tests to check whether
their baseline model is falsified. Abstracting from sampling uncertainty, the population
versions of such specification tests have a persistent problem: What should researchers
do when their baseline model is falsified?

In this paper, we provide a constructive way for researchers to salvage a falsified base-
line model. To do this, we consider continuous relaxations of the baseline assumptions of
concern. By sufficiently weakening the assumptions, a falsified baseline model becomes
nonfalsified. We define the falsification frontier as the set of smallest relaxations of the
baseline model which are not falsified. Our main recommendation is that researchers re-
port estimates of the identified set for the parameter of interest under the assumption
that the true model lies on this frontier. We call this the falsification adaptive set (FAS).
This set collapses to the baseline identified set or point estimand when the baseline model
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is not falsified. When the baseline model is falsified, this set expands to include all param-
eter values consistent with the data and a model which is relaxed just enough to make
it nonfalsified. Hence the FAS generalizes the standard baseline estimand to account for
possible falsification. Importantly, researchers do not need to select or calibrate sensitivity
parameters to compute the falsification adaptive set. We formally define these concepts
in Section 2.

To illustrate this method, we study the classical constant coefficients linear model with
multiple instruments in Section 3. We relax instrument exclusion by allowing the instru-
ments to have some direct effect on outcomes. We show that the FAS has a particularly
simple closed-form expression, depending only on the value of a handful of 2SLS re-
gression coefficients. We then use our results in an empirical study of roads and trade
in Section 4. We show that the FAS is an informative complement to traditional overi-
dentification tests: The FAS summarizes the range of estimates obtained from alternative
models which are not falsified by the data. Thus the FAS reflects the model uncertainty
that arises from a falsified baseline model.

Related Literature

Our paper builds on several large literatures. Manski and Pepper (2018) presented
identified sets under relaxations of two assumptions, which can be used to construct a
falsification adaptive set in their model; see their Table 2. Ramsahai (2012) studied a
heterogeneous treatment effect IV model with continuous relaxations of instrument ex-
ogeneity and informally notes that the model is not falsified if exogeneity is sufficiently
relaxed. Machado, Shaikh, and Vytlacil (2019) studied a heterogeneous treatment effects
IV model and formally define what we call a falsification point. More recently, Andrews
and Kwon (2019) introduced a scalar slack parameter to define minimally nonfalsified
moment inequality models, which do not nest our results.

Our technical results build on a large literature on sensitivity analysis in linear IV mod-
els, including Fisher (1961), Angrist and Krueger (1994), Altonji, Elder, and Taber (2005),
Small (2007), Conley, Hansen, and Rossi (2012), Ashley (2009), Kraay (2012), Ashley and
Parmeter (2015), and van Kippersluis and Rietveld (2017, 2018). There is also a large lit-
erature on falsification and sensitivity analysis in heterogeneous effect IV models; see
Flores and Chen (2018) and Swanson et al. (2018) for excellent surveys.

Several recent papers use local asymptotics to study sensitivity to misspecification. For
example, see Andrews, Gentzkow, and Shapiro (2017), Bonhomme and Weidner (2018),
and Armstrong and Kolesár (2021). This approach assumes the baseline model is ap-
proximately correct, in the sense that the magnitude of model misspecification is similar
to the magnitude of sampling uncertainty. We focus on clearly falsified models, where it
is known that the model is not approximately correct. Hence we use a global approach,
which does not rely on linking the size of model misspecification to the size of sampling
uncertainty. We compare this local misspecification approach with ours in more detail at
the end of Section 4.

2. SALVAGING FALSIFIED MODELS

In this section we consider a general falsifiable model. We use this model to precisely
define the falsification frontier and falsification adaptive set. In Section 3 we illustrate
these general concepts in the classical linear instrumental variable model.
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2.1. Measuring the Extent of Falsification

Let W be a vector of observed random variables. Let F denote the set of all possi-
ble cdfs for W . A model is a set of underlying parameters which generate the observed
distribution FW and restrictions on those parameters. These parameters could be infi-
nite dimensional. This definition of a model suffices for our purposes. See Section 2 of
Matzkin (2007), for example, for a more formal definition. A given model is falsifiable
if there are some distributions FW which could not have been generated by the model.
When the data follows one of these population distributions, we say the model is falsified
(equivalently, refuted). Let Ff denote the set of cdfs FW which falsify the model. Let Fnf

denote the set of cdfs FW which do not falsify the model.
Suppose we begin with a falsifiable baseline model. Suppose this model has L assump-

tions which we think might be false. For each assumption � ∈ {1� � � � �L}, we define a class
of assumptions indexed by a parameter δ� such that the assumption is imposed for δ� = 0,
the assumption is not imposed for δ� equal to its maximum feasible value δmax

� , and the
assumption is partially imposed for δ� ∈ (0� δmax

� ). Two common values of δmax
� are 1 and

+∞. These assumptions must be nested in the sense that for δ′
� ≥ δ�, assumption δ′

� is
weaker than assumption δ�.

Consider the model which imposes assumptions δ = (δ1� � � � � δL). Let Fnf(δ) denote
the set of joint distributions of the data which are not falsified by this model. In particu-
lar, Fnf(0L) denotes the set of joint distributions of the data which are not falsified by the
baseline model. Since we assumed the baseline model is falsifiable, Fnf(0L) is a strict sub-
set of F . Suppose further that the model which does not impose any of the L assumptions
is not falsifiable.

Recall that FW denotes the observed distribution of the data. Suppose FW /∈Fnf(0L), so
that the baseline model is falsified. Partition D = [0� δmax

1 ] × · · · × [0� δmax
L ] into two sets:

Df = {
δ ∈D : FW /∈Fnf(δ)

}
and Dnf = {

δ ∈D : FW ∈Fnf(δ)
}
�

Df is the set of all assumptions which are falsified. Dnf is the set of all assumptions which
are not falsified. For simplicity assume Dnf is closed, which holds in our Section 3 analysis.

DEFINITION 1: The falsification frontier is the set

FF = {
δ ∈D : δ ∈Dnf and for any other δ′ < δ, we have δ′ ∈Df

}
�

where δ′ < δ means that δ′
� ≤ δ� for all � ∈ {1� � � � �L} and δ′

m < δm for some m ∈
{1� � � � �L}.

That is, the falsification frontier is the set of assumptions which are not falsified, but if
strengthened in any component, leads to a falsified model. When L= 1, the falsification
frontier is a singleton called the falsification point: For all δ below that point, the model is
falsified while for all δ above that point the model is not falsified.

2.2. The Falsification Adaptive Set

Let ΘI(δ) denote the identified set for a parameter of interest θ ∈Θ, given the model
which imposes the assumptions δ. When δ ∈ Df, δ is below the falsification frontier. In
this case, the identified setΘI(δ) is empty. When δ ∈Dnf, δ is on or above the falsification
frontier. In this case, the identified set ΘI(δ) is nonempty.
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DEFINITION 2: Call ⋃
δ∈FF

ΘI(δ)

the falsification adaptive set.

The falsification adaptive set is the identified set for the parameter of interest when the
true model satisfies one of the assumptions on the falsification frontier. When the base-
line model is not falsified, this set collapses to ΘI(0L), the baseline identified set (which
may be a singleton). This is what researchers typically report when their baseline model
is not falsified. When the baseline model is falsified, however, the falsification adaptive
set expands to account for uncertainty about which assumption along the frontier is true.
Hence this set generalizes the standard baseline estimand to account for possible falsifi-
cation.

3. THE CLASSICAL LINEAR MODEL WITH MULTIPLE INSTRUMENTS

In this section we illustrate our method in the classical linear instrumental variable
model. While many kinds of falsifiable assumptions have been considered in the litera-
ture, we focus on the classical case where variation from two or more instruments is used
to falsify the model.

3.1. Model and Identification

Let Y(x�z) denote potential outcomes defined for values (x� z) ∈ R
K+L. Assume

Y(x�z)= x′β+ z′γ+U� (1)

where β is an unknown constant K-vector, γ is an unknown constant L-vector, and U is
an unobserved random variable. LetX be an observedK-vector of endogenous variables.
Throughout we suppose X does not contain a constant. Hence U absorbs any nonzero
constant intercept. Let Z be an observed L-vector of potentially invalid instruments. We
observe the outcome Y = Y(X�Z). For simplicity, we have omitted any additional known
exogenous covariates W in equation (1); they can be easily included via partialing out.

Equation (1) imposes homogeneous treatment effects. We also maintain the following
relevance and sufficient variation assumptions throughout this section.

ASSUMPTION A1—Relevance: The L×K matrix cov(Z�X) has rank K.

ASSUMPTION A2—Sufficient variation: The L×L matrix var(Z) is invertible.

A1 implies the order condition L ≥ K. When there is just one endogenous variable
(K = 1), A1 only requires cov(X�Z�) �= 0 for at least one instrument. Other instruments
may have zero correlation. In this case, these other instruments provide additional fal-
sifying power. We discuss this further below. If one instrument is an affine combination
of the others, A2 does not hold. In this case, just remove affinely dependent instruments
until var(Z) is invertible.

The classical model imposes two more assumptions:

ASSUMPTION A3—Exogeneity: cov(Z��U)= 0 for all � ∈ {1� � � � �L}.
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ASSUMPTION A4—Exclusion: γ� = 0 for all � ∈ {1� � � � �L}.
A1–A4 imply that the coefficient vector β is point identified and equals the two stage

least squares (2SLS) estimand. Furthermore, these assumptions imply well-known overi-
dentifying conditions. The following proposition gives these conditions when there is just
a single endogenous variable.

PROPOSITION 1: Suppose K = 1. Suppose the joint distribution of (Y�X�Z) is known
and satisfies A1 and A2. Then the model (1) with A3 and A4 is not falsified if and only if

cov(Y�Zm) cov(X�Z�)= cov(Y�Z�) cov(X�Zm) (2)

for all m and � in {1� � � � �L}.
When all instruments are relevant, so that cov(X�Z�) �= 0 for all � ∈ {1� � � � �L}, equa-

tion (2) can be written as

cov(Y�Zm)
cov(X�Zm)

= cov(Y�Z�)
cov(X�Z�)

�

That is, the linear IV estimand must be the same for all instruments Z�. This result is the
basis for the classical test of overidentifying restrictions (Anderson and Rubin (1949), Sar-
gan (1958), Hansen (1982)). Suppose the distribution of (Y�X�Z) is such that the model
is falsified. This happens when at least one of our model assumptions fails: (a) homoge-
neous treatment effects, (b) linearity in X , (c) instrument exogeneity, or (d) instrument
exclusion.

Here we maintain the homogeneous treatment effects assumption. We consider models
with heterogeneous treatment effects in our working paper Masten and Poirier (2020). We
also maintain linearity of potential outcomes in x, which could include known functions
of covariates like quadratic terms. In principle, our analysis can be extended to allow for
relaxations of this functional form assumption, but we leave this to future work.

We thus focus on failure of (c) instrument exogeneity or (d) instrument exclusion as rea-
sons for falsifying the baseline model. These are two different substantive assumptions.
Mathematically, however, the same technical analysis can be used to relax both assump-
tions. For simplicity, here we formally maintain the exogeneity assumption A3 and focus
on failure of the exclusion assumption A4.

In general, it is difficult to define a meaningful and tractable class of relaxations of
one’s baseline assumptions. In the linear model, however, there is a natural way to relax
the exclusion restriction. Specifically, we use the following class of assumptions.

ASSUMPTION 4′—Partial exclusion: There are known constants δ� ≥ 0 such that |γ�| ≤ δ�
for all � ∈ {1� � � � �L}.

A4′ bounds the magnitude of the direct effect of each instrument on the outcome by
known constants. This kind of relaxation of the baseline instrumental variable assump-
tions was previously considered by Small (2007) and Conley, Hansen, and Rossi (2012);
also see Angrist and Krueger (1994) and Bound, Jaeger, and Baker (1995). Although the
instruments may have a direct causal effect on outcomes, the model may nonetheless con-
tinue to be falsified for sufficiently small values of the components in δ. For sufficiently
large values, however, the model will not be falsified. To characterize the falsification
frontier, we begin by deriving the identified set for β as a function of δ.
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THEOREM 1: Suppose A1–A3 and A4′ hold. Suppose the joint distribution of (Y�X�Z)
is known. Then

B(δ)= {
b ∈ R

K : −δ≤ var(Z)−1
(
cov(Z�Y)− cov(Z�X)b

) ≤ δ} (3)

is the identified set for β. Here the inequalities are componentwise. The model is falsified if
and only if this set is empty.

The identified set B(δ) depends on the data via two terms:

ψ
(L×1)

≡ var(Z)−1 cov(Z�Y) and Π
(L×K)

≡ var(Z)−1 cov(Z�X)�

ψ is the reduced form regression of Y onZ.Π is the first stage ofX onZ. If we demeaned
(Y�X�Z), then we would have ψ= E(ZZ′)−1

E(ZY) and Π = E(ZZ′)−1
E(ZX ′). Theo-

rem 1 shows that the identified set is the intersection of L pairs of parallel half-spaces
in R

K . When δ= 0L, this identified set becomes the intersection of L hyperplanes in R
K .

In this case, β is point identified when cov(Z�Y) = cov(Z�X)b for a unique b ∈ R
K . If

cov(Z�Y) �= cov(Z�X)b for all b ∈ R
K , then the baseline model δ= 0L is falsified.

Increasing the components of δ leads to a weakly larger identified set. Furthermore,
there always exists a δ with large enough components so that B(δ) is nonempty. We char-
acterize the set of such δ below. Before that, we show that the identified set can be written
as simple intersection bounds when there is a single endogenous variable.

COROLLARY 1: Suppose the assumptions of Theorem 1 hold. Suppose K = 1. Then

B(δ)=
L⋂
�=1

B�(δ�)

is the identified set for β, where

B�(δ�)=

⎧⎪⎪⎨⎪⎪⎩
[
ψ�

π�
− δ�

|π�| �
ψ�

π�
+ δ�

|π�|
]

if π� �= 0�

R if π� = 0 and 0 ∈ [ψ� − δ��ψ� + δ�]�
∅ if π� = 0 and 0 /∈ [ψ� − δ��ψ� + δ�]�

(4)

Here Π is an L-vector and π� is its �th component.

To interpret this result, first consider an instrumentZ� with a zero first-stage coefficient,
π� = 0. If Z� has a sufficiently strong relationship with the outcome, so that ψ� ± δ� does
not contain zero, then the model is falsified. Furthermore, in this case falsification can
be solely attributed to the assumption that |γ�| ≤ δ� for this specific �. This is similar to
what is sometimes called the “zero first-stage test” (e.g., see Slichter (2014) and the ref-
erences therein). When this relationship with the outcome is sufficiently small, however,
Z� unsurprisingly has no falsifying or identifying power for β.

Next consider a relevant instrument Z�, so π� �= 0. To interpret Corollary 1 in this case,
we use the following lemma.
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LEMMA 1: SupposeK = 1. Let X̃� = (Z1� � � � �Z�−1�X�Z�+1� � � � �ZL). Let e� be the L×1
vector of zeros with a one in the �th component. Suppose π� �= 0. Suppose cov(Z� X̃�) is
invertible. Then

ψ�

π�
= e′

� cov(Z� X̃�)
−1 cov(Z�Y)�

This lemma shows that ψ�/π� is the population 2SLS coefficient on X using Z� as the
excluded instrument and using the remaining instruments Z−� as controls. Thus the iden-
tified set B(δ) is the intersection of intervals around these 2SLS coefficients using one
relevant instrument at a time and controlling for the rest.

Finally, consider the baseline case where δ = 0L. Corollary 1 implies that B(0L) is
nonempty if and only if

ψm

πm
= ψ�

π�

for any m�� ∈ {1� � � � �L} with πm�π� �= 0 and ψj = 0 when πj = 0. Moreover, in this case
B(0L) is a singleton equal to this common value. In this case—when the baseline model
is not falsified—we also have

ψ�

π�
= cov(Y�Z�)

cov(X�Z�)

for all � ∈ {1� � � � �L}. That is, ψ�/π� equals the population 2SLS coefficient on X using
Z� as an instrument and not including Z−� as controls. This equality of single instrument
2SLS coefficients with and without controls for the other instruments is an alternative
characterization of the classical overidentifying conditions from Proposition 1. Note that,
when these overidentifying conditions do not hold, it can be shown that the baseline 2SLS
estimand is not necessarily in the identified set B(δ). Consequently, it will not necessarily
be in the falsification adaptive set that we describe below. Instead, as shown via Corol-
lary 1 and Lemma 1, the identified set depends on the estimands ψ�/π�, which use Z−� as
controls to allow for possible exclusion failures.

3.2. The Falsification Frontier

So far we have characterized the identified set for β given a fixed value of δ, the up-
per bound on the violation of the exclusion restriction. We now consider the possibility
that this identified set is empty when δ= 0L, so that the baseline model is falsified. Our
next result characterizes the falsification frontier, the minimal set of δ’s which lead to a
nonempty identified set. Here we focus on the single endogenous regressor case. We ex-
tend this result to multiple endogenous regressors in the Online Supplementary Material
(Masten and Poirier (2021)).

PROPOSITION 2: Suppose A1–A3 hold. Suppose the joint distribution of (Y�X�Z) is
known. Suppose K = 1. Then the falsification frontier is the set

FF =
{
δ ∈R

L
≥0 : δ� = |ψ� − bπ�|� �= 1� � � � �L�b ∈

[
min

�=1�����L:π� �=0

ψ�

π�
� max
�=1�����L:π� �=0

ψ�

π�

]}
� (5)

In the proof we show that this set satisfies our Definition 1 of the falsification frontier.
Specifically, any δ ∈ FF maps to a nonempty identified set, and strengthening any of the
assumptions for a given δ ∈ FF leads to an empty identified set.
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3.3. The Falsification Adaptive Set

Next we characterize the falsification adaptive set, which is the identified set for β un-
der the assumption that one of the points on the falsification frontier is true. Here we
again focus on the single endogenous regressor case. We generalize our analysis to mul-
tiple endogenous regressors in the Online Supplementary Material (Masten and Poirier
(2021)).

THEOREM 2: Suppose A1–A3 hold. Suppose the joint distribution of (Y�X�Z) is known.
Suppose K = 1. Then ⋃

δ∈FF

B(δ)=
[

min
�=1�����L:π� �=0

ψ�

π�
� max
�=1�����L:π� �=0

ψ�

π�

]
(6)

is the falsification adaptive set.

We first sketch the proof of this result and then discuss its implications. It follows from
two main steps: First, the identified set B(δ) is a singleton for any δ ∈ FF (see Lemma 2
in the Appendix). Second, each of these singleton sets corresponds to an element in the
interval on the right-hand side of equation (6) (follows using Proposition 2). Thus we
obtain the entire interval by taking the union of all these singletons.

Our main recommendation is that researchers report estimates of the falsification adap-
tive set. Theorem 2 shows that, in the classical linear model we consider here, this set has
an exceptionally simple form. Most importantly, no δ’s appear on the right-hand side of
equation (6). This implies that we can obtain the falsification adaptive set without precom-
puting the falsification frontier or selecting any sensitivity parameters. Furthermore, it is very
simple to compute, since it just requires running L different 2SLS regressions.

In this model, we can also immediately see how this set adapts to falsification of the
baseline model. When the baseline model is not false, ψm/πm = ψ�/π� for all m�� ∈
{1� � � � �L} with nonzero πm and π�. In this case, the falsification adaptive set collapses
to the singleton equal to the common value. This is the same point estimand researchers
would usually present when their baseline model is not falsified. As the baseline model
becomes more falsified, the values of ψ�/π� become more different, and the falsification
adaptive set expands. Thus the size of this set reflects the severity of baseline falsification.

3.4. Estimation and Inference

In finite samples, researchers can present sample analog estimates of the falsification
adaptive set, along with corresponding confidence sets. Our characterization of the FAS
in equation (6) requires that we first screen for irrelevant instruments. It is not clear how
to best do this. We present a first pass approach, but leave a detailed analysis to future
work.

Let {Yi�Xi�Zi}ni=1 be an iid sample from the distribution of (Y�X�Z). Let

Lrel =
{
� ∈ {1� � � � �L} : π� �= 0

}
be the set of indices corresponding to relevant instruments. Estimate this set by

L̂rel =
{
� ∈ {1� � � � �L} : F� ≥ Cn

}
�
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F� is the first-stage F -statistic when considering Z� as an instrument and Z−� as controls.
Cn is a cutoff that diverges as the sample size grows. The assumptions in Proposition 3
below ensure that L̂rel is consistent for Lrel.

Let b̂� be an estimator of ψ�/π�, the 2SLS coefficient on X using Z� as the excluded
instrument and Z−� as controls. We estimate the falsification adaptive set by

F̂AS =
[

min
�∈L̂rel

b̂��max
�∈L̂rel

b̂�

]
�

We use this estimator in our empirical analysis of Section 4. The following result gives
conditions under which this estimator is consistent for the FAS.

PROPOSITION 3: For all � ∈ {1� � � � �L} suppose:
1. b̂�

p−→ψ�/π� when π� �= 0.
2. F�

d−→ χ2
1 when π� = 0.

3. F�/n
p−→ κ� when π� �= 0, where κ� > 0 is some positive constant.

4. As n→ ∞, Cn → ∞ and Cn = o(n).
Let FAS denote the interval in equation (6). Let dH denote the Hausdorff distance. Then
dH(F̂AS�FAS)

p−→ 0.

Assumptions 1–3 hold under standard assumptions on random sampling, existence of
moments, and the existence of consistent variance estimators used within F�. Assump-
tion 4 requires that Cn grows slowly enough to ensure that relevant instruments are kept
in L̂rel with probability approaching one. In our empirical analysis we choose Cn = 10 as
our default cutoff, although we sometimes consider other cutoffs, or a sequence of cut-
offs. Inference can be done by using a version of the delta method discussed in Fang and
Santos (2019), noting that the min and max are directionally differentiable mappings. We
leave a detailed analysis of both the choice of the cutoff and procedures for inference to
future work.

4. EMPIRICAL APPLICATION: ROADS AND TRADE

In this section we apply our results from Section 3 to the empirical analysis of roads
and trade by Duranton, Morrow, and Turner (2014). They consider a dataset of 66 regions
(“cities”) in the United States. Their treatment variable is the log number of kilometers of
interstate highways within a city in 2007. This variable directly affects the cost of leaving
a city and, therefore, the cost of exporting from a city: It is easier to export from a city
with many kilometers of interstate highways passing through it. Their outcome variable is
a measure of how much that city exports. They consider two different ways of measuring
exports: Weight (in tons) and value (in dollars). We focus on the weight measure for
brevity. They begin by estimating a gravity equation relating the weight of a city’s exports
to other cities with the highway distance between those cities, both measured in 2007.
This equation includes a fixed effect for the exporting city. The estimate of this fixed
effect is their main outcome variable. They call this variable the “propensity to export
weight.” Thus their main goal is to estimate the causal effect of within city highways on
the propensity to export weight.

We cannot learn this causal effect by simply regressing the propensity to export weight
on within city highways since there is a classic simultaneity problem. We expect that build-
ing highways within the city will boost exports. But high export cities may also build more
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highways to facilitate their existing exports. The authors solve this problem by instrument-
ing for the number of kilometers of within city highways. They consider three different
instruments:

1. Railroads: The log number of kilometers of railroads in the city in 1898.
2. Exploration: A measure of the quantity of historical exploration routes that passed

through the city.
3. Plan: The log number of kilometers of highway in the city, according to a planned

highway construction map approved by the federal government in 1947. Baum-Snow
(2007) had previously used this instrument, and provides a detailed history.

The authors raise concerns about validity of all three instruments. Although they address
these concerns with various controls, these controls may still not perfectly fix failures of
exogeneity, exclusion, or both. Hence the authors lean on overidentification, stating that
“Using different instruments, for which threats to validity differ, allows for informative
over-identification tests” (p. 700). With this motivation, we next present the results.

Results

First consider Table I. Panel A reproduces columns 1–4 of Table 5 in Duranton, Mor-
row, and Turner (2014). These are their main results. In particular, they are interested in
the coefficient on log highway km, the log number of highway kilometers within the city.
This coefficient represents their estimate of the causal effect of roads on trade. Here it
is estimated by 2SLS, using railroads, exploration, and plan as instruments. At the 10%
level, the standard test of overidentifying restrictions passes in the two longest specifi-
cations, fails in the second specification, and marginally passes in the first specification.
Also note that these specifications do not include all of the additional controls the authors
consider; they include those in separate analyses, which we discuss later (our Table III).

We add the estimated falsification adaptive set to these baseline results. This is the last
row of panel A. There are two things to notice. First, except for the last specification, none
of the 2SLS estimates are within the estimated FAS. This is not surprising since it can be
shown that the baseline 2SLS estimand does not need to be inside the FAS. Second, the
estimated FAS magnitudes are all generally smaller than the 2SLS point estimates.

To better understand how we computed the estimated FAS, and how to interpret it,
next consider Table II. Columns 1–3 include the same baseline controls as column 3 in
Table I while columns 4–6 include the same baseline controls as column 4 in Table I. The
only difference is that we no longer use all three variables (plan, railroads, exploration)
as instruments. Instead, in panel A, we use only one of these variables as an instrument
and we ignore the other two variables. Panel A reproduces columns 4–6 from Table 6
in Duranton, Morrow, and Turner (2014). The authors used these results as their main
robustness check. They argue that the three estimates 0.38, 0.64, and 0.34 from columns
4–6, panel A, Table II are consistent with their baseline estimates of 0.47 and 0.39 from
columns 3 and 4, panel A, Table I.

However, omitting an invalid instrument can lead to omitted variable bias. In this appli-
cation we are concerned that some of the instruments may be invalid. Thus the alternative
models of interest are those where one of the instruments is valid but the others are not.
When computing results in these alternative models, the invalid instruments should be
included as controls (see Lemma 1). Panel B shows these results. Here we use one in-
strument while controlling for the other two. For example, in column 1 we use plan as an
instrument and control for railroads and exploration.

For brevity, here we only describe the results in columns 4–6. These results use the
full baseline specification. Consider column 5, panel B. This result uses railroads as an



SALVAGING FALSIFIED INSTRUMENTAL VARIABLE MODELS 1459

TABLE I

BASELINE 2SLS RESULTS FOR DURANTON, MORROW, AND TURNER (2014):
THE EFFECT OF HIGHWAYS ON EXPORT WEIGHT.a

aNotes: 66 observations per column. All specifications include a constant. Heteroskedasticity robust standard errors in parentheses.
Panel A reproduces columns 1–4 of Table 5 in Duranton, Morrow, and Turner (2014). It also shows the estimated falsification adaptive
set. Panel B uses only two of their instruments, controlling for the other.

instrument, controlling for plan and highway. Unlike the uncontrolled result from panel
A, railroads is a very weak instrument. Hence we ignore the result using railroads alone,
as discussed in Section 3.4. Next consider column 4. Here we use plan as the instrument,
controlling for the other two. Despite these controls, plan is still a strong instrument. The
estimated effect 0.18 is roughly half as large as the estimate from panel A, 0.38. It is also
no longer statistically significant at any conventional level. Next consider column 6. Here
we use exploration as the instrument, controlling for the other two. Exploration continues
to be a strong instrument with these controls. The estimated effect 0.42 in panel B is
similar to the effect from panel A, 0.34. It is no longer statistically significant, however.

Putting these coefficient estimates together gives us the estimated FAS, [0�18�0�42].
The endpoints of this set correspond to point estimates from alternative models which
maintain validity of only one instrument at a time. The interior of this set corresponds to
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TABLE II

THE EFFECT OF CONTROLLING FOR UNUSED INSTRUMENTS.a

aNotes: 66 observations per column. All specifications include a constant. Heteroskedasticity robust standard errors in parenthe-
ses. All columns have employment, market access, and past populations as controls. Columns 4–6 also have manufacturing share of
employment as controls. Panel A reproduces the results from columns 4–6 of Table 6 in Duranton, Morrow, and Turner (2014) while
the estimates in panel B are new.

alternative models which relax validity of all instruments at once, but just enough to avoid
falsification.

In panel B of Table II, we found that railroads is a weak instrument when controlling for
the other two, and hence it yields the largest point estimates. Given this finding, one may
also wonder how removing railroads as an instrument affects the baseline analysis. This
is shown in panel B of Table I. All of the coefficients on log highway km are smaller, to
the point that they are no longer statistically significant for all but the shortest specifica-
tion. Moreover, the standard overidentification tests now all easily pass. (Note that these
tests are only comparing results using plan and exploration as instruments.) However, the
coefficients on railroads are statistically significant for all but the fourth column. This sug-
gests that the full baseline model using all three instruments could be rejected, and also
explains the source of the relatively small overidentification test p-values in panel A.

Thus far we have focused on the baseline results, which do not include all of the possi-
ble control variables that the authors discuss. Table III shows results with their additional
controls. We begin with the full set of baseline control variables, as used in column 4 of
Table I. We then add just one control. Each row corresponds to a different control. The
last row shows the results that add all controls at once. Unlike the main baseline result,
column 4 of Table I, here we only use one instrument at a time. Columns 1–3 use a single
instrument, without controlling for the other two. These results reproduce Appendix Ta-
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TABLE III

THE EFFECT OF CONTROLLING FOR UNUSED INSTRUMENTS, CONTINUED.a

aNotes: 66 observations per column. All specifications include a constant. Heteroskedasticity robust standard errors in parentheses.
This table extends the analysis of Table II to consider specifications with additional control variables. Columns 1–3 reproduce the
results in Appendix Table 6 of Duranton, Morrow, and Turner (2014), while the estimates in Columns 4–6, which add controls for the
other instruments, are new.

ble 6 of Duranton, Morrow, and Turner (2014). Based on these results, the authors argue
that “None of our main results is affected by these controls, even when we use our instru-
ments individually” (p. 708). They also argue that using one instrument at a time is an
“even more demanding exercise” than examining the effect of additional controls when
using all three instruments (not shown here; see their Appendix Table 5). As we have dis-
cussed, however, omitting the invalid instruments may cause omitted variable bias. So in
columns 4–6, we replicate columns 1–3, except now controlling for the other two instru-
ments.
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There are three main differences between the results with the instrument controls and
those without. First, the railroads instrument is again very weak, leading to large coef-
ficients. This informs our understanding of the results from columns 1–3, since there we
observed that the coefficients in column 2 are always larger than those in columns 1 and 3,
and are often substantially larger. Second, none of the results are statistically significant
at conventional levels. Finally, the coefficients using plan as the instrument all become
smaller once the other instruments are controlled for (column 4 versus column 1), while
the coefficients using exploration as the instrument all become larger once the other in-
struments are controlled for (column 6 versus column 3). Thus, ignoring the results using
railroads, the overall range of point estimates is larger. This is reflected in the estimated
falsification adaptive sets, which are presented in the final column.

Overall, there are two main conclusions from our analysis: First, the evidence suggests
that the railroads instrument is the most questionable, and should be used only as a con-
trol. Thus the estimates in panel B of Table I are arguably the most appropriate baseline
results. Second, there is substantially more uncertainty in the magnitude of the causal
effect of roads on trade than suggested by the original results of Duranton, Morrow,
and Turner (2014). This is reflected in the various estimated falsification adaptive sets we
present. In particular, the estimated FAS for the longest specification is [0�18�0�69]; see
Table III. Moreover, accounting for sampling uncertainty would only increase this range.
That said, these results do not change the overall qualitative conclusions of the paper:
All points in the estimated FAS for the longest specification are still positive, suggesting
that the number of within city highways appears to positively affect propensity to export
weight.

Comparison With the Andrews, Gentzkow, and Shapiro (2017) Approach

In this subsection we compare our approach with that of Andrews, Gentzkow, and
Shapiro (2017). They study general moment equality models, while we focus on the lin-
ear IV model. For the linear IV model, in their example 4 they study the sensitivity of
the 2SLS estimator to violations of exclusion or exogeneity of the same magnitude as the
sampling uncertainty (proportional to 1/

√
n). Under such data generating processes, and

as in Conley, Hansen, and Rossi (2012), they show that the 2SLS estimator is consistent,
but asymptotically biased. The asymptotic bias has the form Aγ where γ is a vector of
sensitivity parameters and A is a matrix that is point identified from the data. Andrews,
Gentzkow, and Shapiro (2017) recommended that authors report estimates of A, which
allows readers to select a γ and compute their own local asymptotic bias correction for
the 2SLS estimator.

Our empirical application has a single endogenous variable, log highway km. We are
primarily interested in its coefficient. For a given choice of γ, it can be shown that the
local asymptotic bias of the 2SLS estimator for this coefficient is a1γ1 + · · · + aLγL where

a� = cov
(
Z��X

⊥W
pred

)
var

(
X⊥W

pred

) � (7)

Here W is the vector of the included exogenous control variables, Xpred is the predicted
value of the endogenous variable from the first stage regression of X on (1�Z�W ), and
X⊥W

pred is the residual from the linear regression of Xpred on (1�W ). Thus the relevant el-
ements a� of the matrix A are simply the coefficients on Xpred in a linear regression of
Z� on (1�Xpred�W ) for each � = 1� � � � �L. In addition to reporting the elements of A,
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TABLE IV

ANALYSIS OF THE LOCAL SENSITIVITY OF THE 2SLS ESTIMATOR
FOR THE FOUR BASELINE SPECIFICATIONS IN TABLE Ia

Dependent Variable: Export Weight

(1) (2) (3) (4)

Panel A. Estimates of a�/stddev(Z�), the standardized elements of the matrix A

Plan 1�80 2�36 2�46 2�46
Railroads 1�44 1�73 1�49 1�45
Exploration 1�09 1�48 1�55 1�69

Panel B. Point estimates of the coefficient on log highway km

Baseline 2SLS 1�13 0�57 0�47 0�39
Bias (γ� = 1/stddev(Z�)) 0�53 0�69 0�68 0�69
Bias corrected 2SLS (γ� = 1/stddev(Z�)) 0�60 −0�11 −0�21 −0�30
Bias corrected 2SLS (γ� = −1/stddev(Z�)) 1�67 1�26 1�14 1�08

aNotes: n= 66 observations per column. 1/
√
n= 0�12. In panel B, Bias is an estimate of (a1γ1 + · · · + aLγL)/

√
n.

Andrews, Gentzkow, and Shapiro (2017) also recommended comparing their magnitudes.
As they note, this can be difficult because the units of this matrix depend on the units of
the moments themselves. In our case, this means that the instrument � with the largest
value of |a�| is not necessarily the most important for the local asymptotic bias—it de-
pends on the units of eachZ�. To address this, we standardize the instruments as described
below.

Table IV shows the empirical results. Here we focus on the four main baseline speci-
fications, as reported in Table I. Panel A reports estimates of a�/stddev(Z�) for each of
the three instruments. We see that plan has the largest value of the three instruments.
Given equation (7) above, this means that plan has the largest correlation with the pre-
dicted treatment, after controlling for covariates. This is consistent with what we reported
in Table II, where plan had the largest first stage F -statistic conditional on the other two
instruments. Note, however, that railroads and exploration both have roughly the same
values in panel A. This suggests that they are equally important for the asymptotic bias of
the 2SLS estimator. In contrast, our analysis in Table II suggested that, unlike exploration,
railroads is a conditionally very weak instrument, and should possibly not be relied on.

In panel B we consider two possible choices of the local sensitivity parameters: γ� =
±1/stddev(Z�). These choices can be interpreted as saying that if Z� increases by one
standard deviation, then the direct effect of Z� on outcomes is ±1/

√
n. For these choices,

the magnitude of the estimated asymptotic bias is quite large, leading to bias corrected
2SLS estimators which are both positive and negative for the main specification (column
4). This sensitivity analysis thus suggests that even the main qualitative results of Duran-
ton, Morrow, and Turner (2014) are not robust to violations of exclusion of that mag-
nitude. In contrast, the estimated FAS for the main specification (column 4 of Table I)
still contains only positive numbers, suggesting that the qualitative results of Duranton,
Morrow, and Turner (2014) are robust to exclusion violations that are sufficiently large to
explain falsification of the baseline model.

Overall, this discussion highlights two key practical differences between our analysis
and that of Andrews, Gentzkow, and Shapiro (2017). First, their approach is estimator
specific: Different estimators of the same parameter can lead to different conclusions
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about sensitivity. Thus our comparisons of the relative sensitivity of exclusion violations
for each of the three instruments above could change if we used an estimator other than
2SLS. In contrast, our approach is a population level identification analysis that does
not depend on a specific choice of baseline estimator. Second, their approach ultimately
requires researchers—either authors or readers—to choose the sensitivity parameter γ.
In contrast, our approach can be thought of as leveraging falsification of the baseline
model to automatically calibrate the parameter γ, by considering the minimal relaxations
that make the instruments consistent with each other.

5. CONCLUSION

In this paper we suggested a constructive answer to the question “What should re-
searchers do when their baseline model is falsified?” We recommend reporting estimates
of the set of parameters that are consistent with minimally nonfalsified models. We call
this the falsification adaptive set (FAS) because it generalizes the standard baseline es-
timand to account for possible falsification. We illustrated this recommendation in the
classical linear instrumental variable model with multiple instruments. We showed that
the FAS has a particularly simple closed-form expression, depending only on the value
of a handful of 2SLS regression coefficients. Finally, we showed how to use our results
in practice. There we discussed the importance of controlling for the possibly invalid in-
struments when considering alternative models. Overall, we showed that the FAS is an
informative complement to traditional overidentification test p-values: It directly sum-
marizes the range of estimates corresponding to nonfalsified alternative models.

APPENDIX: PROOFS FOR SECTION 3

PROOF OF PROPOSITION 1: Note that we assumed A1–A2 hold since they depend on
observables only. Suppose equation (2) holds for allm�� ∈ {1� � � � �L}. We will construct a
joint distribution (Y�X�Z� Ũ) and a parameter β̃ consistent with the data, equation (1),
and assumptions A3–A4.

By the relevance assumption A1, there exists an � such that cov(X�Z�) �= 0. Let β̃ =
cov(Y�Z�)/ cov(X�Z�). Let Ũ = Y −Xβ̃. For every m ∈ {1� � � � �L},

cov(Ũ�Zm)= cov(Y�Zm)− cov(X�Zm)β̃

= cov(Y�Zm)− cov(X�Zm)
cov(Y�Z�)
cov(X�Z�)

= cov(Y�Zm) cov(X�Z�)− cov(Y�Z�) cov(X�Zm)
cov(X�Z�)

= 0�

Thus A3 holds. A4 holds by definition of Ũ . Thus the model is not falsified.
Next suppose the model is not falsified. Then there exists a joint distribution of

(Y�X�Z�U) and a value β consistent with the model assumptions, equation (1), and
the data. By A3–A4, we have

cov(Y�Z�)= β cov(X�Z�) (8)

for all � ∈ {1� � � � �L}. Suppose β= 0. Then cov(Y�Z�)= 0 for all �, and hence equation
(2) holds for all m�� ∈ {1� � � � �L}.
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Suppose β �= 0. Then multiplying equation (8) for � by equation (8) for m gives

cov(Y�Z�)× (
β cov(X�Zm)

) = (
β cov(X�Z�)

) × cov(Y�Zm)�

Divide by β to see that equation (2) holds for all m�� ∈ {1� � � � �L}. Q.E.D.

PROOF OF THEOREM 1: First we show that any value of β consistent with the model
must lie in B(δ). By the outcome equation (1) and instrument exogeneity (A3),

cov(Z�Y)= cov(Z�X)β+ var(Z)γ�

By A2,

γ = var(Z)−1
(
cov(Z�Y)− cov(Z�X)β

)
�

Since −δ≤ γ ≤ δ (componentwise) by A4′, we have β ∈ B(δ).
Next we show that B(δ) is sharp. Let b ∈ B(δ). Define

γ = var(Z)−1
(
cov(Z�Y)− cov(Z�X)b

)
�

Then γ satisfies A4′ by definition of B(δ). Next, define Ũ ≡ Y −X ′b−Z′γ. Then

cov(Z� Ũ)= cov(Z�Y)− cov(Z�X)b− var(Z)γ

= cov(Z�Y)− cov(Z�X)b− var(Z) var(Z)−1
(
cov(Z�Y)− cov(Z�X)b

)
= 0�

Thus A3 holds. Hence B(δ) is sharp. That the model is falsified if and only if this set is
empty follows by the definition of the (sharp) identified set. Q.E.D.

PROOF OF COROLLARY 1: Write the identified set from Theorem 1 as

B(δ)= {b ∈ R : −δ≤ψ− bπ ≤ δ}
= {b ∈ R :ψ� − δ� ≤ bπ� ≤ψ� + δ�� �= 1� � � � �L}�

Equation (4) follows immediately by considering the cases π� = 0, π� < 0, and π� > 0
separately. Q.E.D.

PROOF OF LEMMA 1: Without loss of generality, let � = 1. The result for � �= 1 can
be obtained by permuting the components of the vector Z. Then X̃1 = (X�Z2� � � � �ZL).
Hence

cov(Z� X̃1)=
(

cov(Z1�X) cov(Z1�Z−1)
cov(Z−1�X) var(Z−1)

)
�

By block matrix inversion, the first row of cov(Z� X̃1)
−1 is

e′1 cov(Z� X̃1)
−1

=
( (

cov(Z1�X)− cov(Z1�Z−1) var(Z−1)
−1 cov(Z−1�X)

)−1

−(
cov(Z1�X)− cov(Z1�Z−1) var(Z−1)

−1 cov(Z−1�X)
)−1 cov(Z1�Z−1) var(Z−1)

−1

)′
�
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Let Z̃1 = Z1 − cov(Z1�Z−1) var(Z−1)
−1Z−1 be the population residual from a regression

of Z1 on Z−1. Then

e′
1 cov(Z� X̃1)

−1 cov(Z�Y)= cov(Z1�Y)− cov(Z1�Z−1) var(Z−1)
−1 cov(Z−1�Y)

cov(Z1�X)− cov(Z1�Z−1) var(Z−1)
−1 cov(Z−1�X)

= cov(Z̃1�Y)

var(Z̃1)

/cov(Z̃1�X)

var(Z̃1)

= ψ1

π1
�

The last line follows by the partitioned regression formula. Q.E.D.

We use the following lemma in the proofs of Proposition 2 and Theorem 2. It says that
the identified set for β is a singleton at any point δ in the set FF defined in equation (5).

LEMMA 2: Suppose A1–A3 hold. Suppose K = 1. Let

b ∈
[

min
�=1�����L:π� �=0

ψ�

π�
� max
�=1�����L:π� �=0

ψ�

π�

]
�

Define δ(b)= (|ψ1 − bπ1|� � � � � |ψL − bπL|). Then B(δ(b))= {b}.
PROOF OF LEMMA 2: We have

B
(
δ(b)

) =
⋂

�=1�����L:π� �=0

[
ψ�

π�
− |ψ� − bπ�|

|π�| �
ψ�

π�
+ |ψ� − bπ�|

|π�|
]

=
( ⋂
�=1�����L:ψ�≥bπ��π� �=0

[
ψ�

π�
−

∣∣∣∣ψ�π� − b
∣∣∣∣� ψ�π� +

∣∣∣∣ψ�π� − b
∣∣∣∣]

)

⋂ ( ⋂
�=1�����L:ψ�<bπ��π� �=0

[
ψ�

π�
−

∣∣∣∣ψ�π� − b
∣∣∣∣� ψ�π� +

∣∣∣∣ψ�π� − b
∣∣∣∣]

)

=
( ⋂
�=1�����L:ψ�≥bπ��π� �=0

[
b�2

ψ�

π�
− b

]) ⋂ ( ⋂
�=1�����L:ψ�<bπ��π� �=0

[
2
ψ�

π�
− b�b

])
= {b}�

The first line follows by equation (4) and the definition of δ(b). The remaining lines follow
by considering two cases so that we can eliminate the absolute values. Q.E.D.

PROOF OF PROPOSITION 2: Let FF denote the true falsification frontier from Defini-
tion 1. Let

FFguess =
{
δ ∈R

L
≥0 : δ� = |ψ� − bπ�|� �= 1� � � � �L�b ∈

[
min

�=1�����L:π� �=0

ψ�

π�
� max
�=1�����L:π� �=0

ψ�

π�

]}
�

We will show FF = FFguess. We split the proof in three parts. The first two parts together
show that FFguess ⊆ FF. The third part shows that FFguess ⊇ FF.
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1. We first show that if δ ∈ FFguess, then the identified set B(δ) is not empty. This follows
immediately from Lemma 2.

2. We next show that δ′ < δ for δ ∈ FFguess implies that B(δ′) is empty. So let δ′ < δ
where δ ∈ FFguess and δ′ ≥ 0. Consider two cases:
(a) First suppose δ′

� < δ� for some � such that π� = 0. By the definition of FFguess,
δ� = |ψ�|. Note that δ� > δ′

� ≥ 0 implies ψ� �= 0. If ψ� > 0 then ψ� − δ′
� > 0. So

0 /∈ [ψ� − δ′
��ψ� + δ′

�]. Hence B�(δ′
�)= ∅ by equation (4). The case for ψ� < 0 is

similar. Thus in this case we must have B(δ′)= ∅.
(b) Next suppose δ′

� < δ� for some � such that π� �= 0. δ′ < δ implies that B(δ′) ⊆
B(δ). By Lemma 2, B(δ)= {b∗} for some value b∗. Thus it suffices to show that
b∗ /∈ B(δ′). That will imply that B(δ′)= ∅.

To show that b∗ /∈ B(δ′) it suffices to show that b∗ /∈ B�(δ′) for some �, since
B(δ′) is the intersection of these sets over all �’s, by Corollary 1. From that
corollary we have

B�
(
δ′) =

[
ψ�

π�
− δ′

�

|π�| �
ψ�

π�
+ δ′

�

|π�|
]
�

If b∗ ≤ ψ�/π�, then b∗ = ψ�/π� − δ�/|π�| < ψ�/π� − δ′
�/|π�|. Therefore, b∗ /∈

B�(δ
′). The case where b∗ >ψ�/π� is analogous. Hence b∗ /∈ B(δ′).

Steps 1 and 2 together imply that FFguess ⊆ FF.
3. Finally, we show that FFguess ⊇ FF. We show the contrapositive: δ /∈ FFguess implies

that δ /∈ FF. So let δ /∈ FFguess. Denote

bmin = min
�=1�����L:π� �=0

ψ�

π�
and bmax = max

�=1�����L:π� �=0

ψ�

π�
�

There are two cases to consider.
(a) Suppose B(δ) ⊆ [bmin� bmax]. If B(δ) = ∅ then δ /∈ FF. So we can assume

B(δ) �= ∅. We will show that we can find a δ′ < δ such that B(δ′) �= ∅, and hence
δ /∈ FF. Let b′ ∈ B(δ) ⊆ [bmin� bmax]. First, δ(b′) ∈ FFguess and δ /∈ FFguess imply
that δ �= δ(b′). Since b′ ∈ B(δ), δ�(b′)= |ψ�−b′π�| ≤ δ� for all �. Thus δ(b′) < δ.
Next, B(δ(b′))= {b′} �= ∅ by Lemma 2. So if we let δ′ = δ(b′) then we have δ′ < δ
and B(δ′) �= ∅. So δ /∈ FF by definition of the falsification frontier.

(b) Suppose B(δ) contains an element b /∈ [bmin� bmax]. Suppose b > bmax. Let δ′ =
δ(bmax) ∈ FFguess. By δ /∈ FFguess, δ �= δ′. If � is such that π� = 0, then δ′

� = |ψ�| =
|ψ� − bπ�| ≤ δ� by definition of b ∈ B�(δ�). If � is such that π� �= 0, then

δ′
� = |ψ� − bmaxπ�| = |π�|(bmax −ψ�/π�) < |π�|(b−ψ�/π�)≤ δ�

by b > bmax. So δ′ ≤ δ. Together with δ �= δ′, we have δ′ < δ. Also, B(δ′) =
{bmax} �= ∅ by Lemma 2. So δ /∈ FF by definition of the falsification frontier.
A similar argument applies if instead we have b < bmin. Q.E.D.

PROOF OF THEOREM 2: We have⋃
δ∈FF

B(δ)=
⋃

b∈
[
min�=1�����L:π� �=0

ψ�
π�
�max�=1�����L:π� �=0

ψ�
π�

]B
(
δ(b)

)
=

⋃
b∈

[
min�=1�����L:π� �=0

ψ�
π�
�max�=1�����L:π� �=0

ψ�
π�

]{b}
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=
[

min
�=1�����L:π� �=0

ψ�

π�
� max
�=1�����L:π� �=0

ψ�

π�

]
�

The first equality follows by the characterization of the falsification frontier in Proposi-
tion 2. The second equality follows by Lemma 2. Q.E.D.

PROOF OF PROPOSITION 3: It suffices to show that⎛⎝min
�∈L̂rel

b̂�

max
�∈L̂rel

b̂�

⎞⎠ p−→
⎛⎝min
�∈Lrel

ψ�/π�

max
�∈Lrel

ψ�/π�

⎞⎠ �
We have

P

(
min
�∈L̂rel

b̂� = min
�∈Lrel

b̂�

)
≥ P(L̂rel =Lrel)

= P

( ⋂
�:π�=0

{F� < Cn} ∩
⋂
�:π� �=0

{F� ≥ Cn}
)

= P

( ⋂
�:π�=0

{
C−1
n F� < 1

} ∩
⋂
�:π� �=0

{
n−1F� − n−1Cn ≥ 0

})
�

This probability converges to 1 as n → ∞. To see that, use assumptions 2–4 to get
C−1
n F�1(π� = 0) = C−1

n Op(1) = op(1), which is strictly less than 1 with probability ap-
proaching 1. Similarly, n−1F�1(π� �= 0) − n−1Cn1(π� �= 0) = κ� + op(1) − o(1), which is
greater than or equal to 0 with probability approaching 1. Thus min�∈L̂rel b̂� = min�∈Lrel b̂�+
op(1). By consistency of b̂� for � ∈ Lrel (assumption 1) and continuity of the mini-
mum function, min�∈Lrel b̂�

p−→ min�∈Lrel ψ�/π�. The same analysis applies to the maxi-
mum. Q.E.D.
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