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Abstract

We study identification and estimation of the average partial effect in an in-

strumental variable correlated random coefficients model with continuously dis-

tributed endogenous regressors. This model allows treatment effects to be corre-

lated with the level of treatment. The main result shows that the average partial
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effect is identified by averaging coefficients obtained from a collection of ordinary

linear regressions that condition on different realizations of a control function.

These control functions can be constructed from binary or discrete instruments

which may affect the endogenous variables heterogeneously. Our results suggest

a simple estimator that can be implemented with a companion Stata module.

JEL classification: C14; C26; C51

Keywords: correlated random coefficients, instrumental variables, unobserved heterogene-

ity, semiparametrics

1. Introduction

This paper is about the linear correlated random coefficients (CRC) model. In its simplest

form, the model can be written as

Y = B0 +B1X, (1)

where Y is a continuous outcome variable, X is an endogenous explanatory variable, and B ≡

(B0, B1) are unobservable variables that may be statistically dependent with X. Endogeneity

in X is often addressed by using the variation of an instrumental variable, Z, that is plausibly

independent (or uncorrelated) with (B0, B1), but correlated with X. The most common

estimator for implementing this strategy is two-stage least squares (2SLS).

If both X and Z are binary, and if Z affects X monotonically, then the 2SLS estimator is

consistent for the local average treatment effect (LATE), which is the unweighted average of

B1 for the subpopulation of compliers (Imbens and Angrist 1994). However, as the support

of X grows from binary to multi-valued discrete to continuous, the 2SLS estimand becomes

an increasingly complicated weighted average of LATEs between different X realizations

(Angrist and Imbens 1995, Angrist, Graddy, and Imbens 2000). This type of weighted
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average of LATEs can be difficult to interpret. These difficulties compound as additional

explanatory variables are added to (1) (Abadie 2003).

A more natural parameter is E[B1], which is often called the average partial effect (APE).

In a series of papers, Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2008) showed

that if the causal effect of Z on X is homogeneous, then the 2SLS estimator is consistent for

the APE. This modeling assumption is uncomfortably asymmetric: treatment effects may

be heterogeneous, but instrument effects may not. When the causal effect of the instrument

is actually heterogeneous, the 2SLS estimand generally differs from the APE.

As an alternative to assuming homogeneity in the first stage, one can consider differ-

ent instrumental variables estimators besides 2SLS. Florens, Heckman, Meghir, and Vytlacil

(2008) take this approach in considering a polynomial version of (1) that also includes an

additive nonparametric function of X. Like Imbens and Newey (2009) and others, they as-

sume that X is continuous, that there exists a function h that is strictly increasing in a scalar

unobservable V such that X = h(Z, V ), and that Z is independent with the unobservables

in both the outcome and first stage equations. These restrictions still allow for heterogeneity

in the causal effect of Z on X, albeit in a limited form. Under these assumptions, Florens

et al. (2008) show that the APE can be identified if Z is continuous.

We show that for the linear CRC model (1), this same first stage assumption can be

sufficient to identify the APE even if Z has binary or discrete support, which is often the case

for instruments used in practice. Moreover, our main identification result suggests a simple

semiparametric estimator of the APE that does not suffer from the curse of dimensionality.

A companion Stata module for implementing the estimator is available. Taken together,

our results provide an alternative to 2SLS for applied researchers studying the causal effect

of a continuous treatment X using a binary or discrete instrument Z. The benefit of our

estimator relative to 2SLS is that it is consistent for an easily-interpretable parameter while

still allowing for discrete instruments and heterogeneity in the causal effect of Z on X.
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2. Model and Identification

A more general version of (1) is

Y = B0 +
dx∑
j=1

BjXj +

d1∑
j=1

Bdx+jZ1j ≡ W ′B, (2)

where X ∈ Rdx is a vector of potentially endogenous variables, Z1 ∈ Rd1 is a vector of

included exogenous variables with jth component Z1j, W ≡ [1, X ′, Z ′1]
′ ∈ Rdw with dw ≡

1 + dx + d1, and B ∈ Rdw is a vector of unobservable variables. In addition to Z1, there is a

vector of excluded exogenous variables (instruments) Z2 ∈ Rd2 that do not directly affect Y

in (2). We write the exogenous variables together as Z ≡ [Z ′1, Z
′
2]
′ ∈ Rdz with dz ≡ d1 + d2.

We divide the vector of endogenous variables X into subvectors of lengths db ≥ 1 and

dx − db ≥ 0. We call the first db components of X the basic endogenous variables and the

last dx − db components of X the derived endogenous variables. We assume that the basic

endogenous variables satisfy a particular first stage structure specified ahead. In contrast, we

assume that the derived endogenous variables are known functions of the basic endogenous

variables and the included exogenous variables Z1. For example, we could have db = 1

and derived endogenous variables Xk = Xk for k > db, as in Florens et al. (2008). Or,

we could have an interaction term Xk = X1Z1 for some k > db, thereby allowing for the

distribution of causal effects of X1 on Y to differ arbitrarily across values of Z1. For example,

this allows men and women to have different distributions of treatment effects, allowing for

heterogeneity on observables to be dealt with in the usual way.

Throughout our analysis we frequently use the observable random db vector

R ≡ [R1, . . . , Rdb ]′ ≡ [FX1|Z(X1|Z), . . . , FXdb
|Z(Xdb|Z) ]′,

which we call the conditional rank of X. Below, we restrict Xk to be continuously distributed

for k = 1, . . . , db so that each Rk is distributed uniformly on [0, 1]. Our main result is theorem
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1, which uses the following assumptions.

Assumption I.

I1. (Existence of moments) E[B] and E[WW ′] exist.

I2. (First stage equation) For each basic endogenous variable Xk, k = 1, . . . , db, there

exists a scalar unobservable random variable Vk and a possibly unknown function hk

that is strictly increasing in its second argument, for which Xk = hk(Z, Vk). The vector

V ≡ (V1, . . . , Vdb) is continuously distributed.

I3. (Derived endogenous variables) For each k = db + 1, . . . , dx, there exists a known

function gk such that Xk = gk(X1 . . . , Xdb , Z1).

I4. (Instrument exogeneity) (B, V )⊥⊥Z.1

I5. (Instrument relevance) E[WW ′|R = r] is invertible for almost every r in a known

Lebesgue measurable set R ⊆ supp(R).

Theorem 1. Define β(r) ≡ E[B|R = r] and β̃(r) ≡ E[WW ′|R = r]−1 E[WY |R = r].

Under Assumptions I, β̃(r) = β(r) for any r ≡ (r1, . . . , rdb) ∈ R. Hence both β(r) and

βR ≡ E[B|R ∈ R] are point identified.

The proof of theorem 1 uses the following implication of I2–I4. Similar results have been

used previously by Imbens (2007), Florens et al. (2008), Imbens and Newey (2009), and

Torgovitsky (2015). Our working paper (Masten and Torgovitsky 2014) contains a proof.

Proposition 1. I2 and I4 imply that (R,B)⊥⊥Z. If I3 also holds, then W ⊥⊥B|R.

1 Our main results, theorems 1 and 2, continue to hold under the weaker assumption

that V ⊥⊥Z and E[B|V, Z] = E[B|V ], although several of our discussion points use the

stronger assumption I4.
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Proof of theorem 1. I1 ensures that all conditional moments of interest exist. Premulti-

plying both sides of (2) by W and taking expectations conditional on R = r, we have

E[WY |R = r] = E[WW ′B|R = r] = E[WW ′|R = r]β(r), (3)

by proposition 1. Given I5, we can premultiply both sides of (3) by the inverse of E[WW ′|R =

r] to obtain β̃(r) = β(r) for any r ∈ R. Since β̃(r) is a feature of the distribution of

observables, this shows that β(r) is identified. Because the distribution of R is observable

and R is known, βR is also identified. Q.E.D.

3. Discussion

The intuition behind theorem 1 is that the first stage (I2) and instrument exogeneity (I4)

assumptions imply that Rk = FVk
(Vk) for k = 1, . . . , db, so that conditioning on R = r is the

same as conditioning on Vk being equal to its rkth quantile QVk
(rk) for k = 1, . . . , db. Hence,

conditioning on R fixes V , so that all of the remaining variation in the basic endogenous

variables is driven solely by variation in Z. Since the derived endogenous variables are known

functions of the basic endogenous variables and Z1, all of the variation in W conditional on

R = r is also due solely to variation in Z. Given that conditioning on R = r is equivalent to

conditioning on Vk = QVk
(rk) for all k = 1, . . . , db, this together with instrument exogeneity

(I4) then implies that B is independent of W , conditional on R = r. As a result, a linear

regression of Y on W conditional on R = r identifies β(r) ≡ E[B|R = r]. As in standard

linear regression models, this requires E[WW ′|R = r]−1 to exist, which is assumed in I5.

Averaging E[B|R = r] over r ∈ R then yields βR ≡ E[B|R ∈ R]. If I5 holds for some

measure one subset of supp(R), then βR = E[B] and the APE is identified.

Assumption I5 serves the same purpose as the standard no perfect multicollinearity condi-

tion in ordinary least squares. Consequently, it requires the analyst to avoid standard causes

of failure, such as the dummy variable trap. Aside from these mechanical causes of failure,
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whether I5 holds depends on the relevance of the instruments. When dx = db = 1, so that

there is a single basic endogenous variable and no derived endogenous variables, I5 is equiv-

alent to Var[QX|Z(r | Z)] > 0 for all r ∈ R. If Z ∈ {0, 1} is binary and nondegenerate, then

Var[QX|Z(r | Z)] > 0 is true if and only if QX|Z(r | 0) 6= QX|Z(r | 1). That is, the two curves

in figure 1 must be separated at r. Since QX|Z(r | Z) = h(Z,QV (r)) by I2 and I4, I5 requires

that for each r ∈ R there are distinct z, z′ ∈ supp(Z) with h(z,QV (r)) 6= h(z′, QV (r)).

Hence, the instrument must affect the endogenous variable for all units with first stage

unobservables v = QV (r) at which we want to learn the conditional mean of B.

Whether I5 holds is an empirical matter in the sense that the condition only depends on

the distribution of observables and so, at least in principle, can be checked in the data. If

I5 holds for a subset R of supp(R), then theorem 1 identifies βR ≡ E[B|R ∈ R], which may

not equal E[B]. Nevertheless, βR has an interpretation similar to the unweighted LATE of

Imbens and Angrist (1994). That is, βR is the unweighted average of B for those agents

for whom the instrument Z has a causal effect on their treatment X. Unlike Imbens and

Angrist (1994), we do not require this effect to be monotonic. This type of parameter may

be of comparable (or even greater) interest than E[B] for a policy maker considering a policy

change that affects the determination of X through an incentive Z. While I5 may fail for

some subset of supp(R), it is an intuitively appealing requirement for an instrument. Agents

in a subpopulation R = r for an r at which E[WW ′|R = r] is singular do not experience

independent variation in W due to variation in Z, and so it is natural that E[B|R = r]

should not be point identified for those agents.

If a component of B is bounded, then knowledge of E[B|R ∈ R] for a subsetR of supp(R)

yields partial identification of E[B]. For example, consider the model (1) and suppose that

B1 ∈ [B1L, B1U ], where B1L and B1U are known constants specified by the researcher. Then

bounds on E[B1] follow from the law of iterated expectation similar to Manski (1989):

E[B1|R ∈ R]P[R ∈ R] +B1LP[R /∈ R] ≤ E[B1] ≤ E[B1|R ∈ R]P[R ∈ R] +B1UP[R /∈ R].
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As in standard linear models, identification of E[B] (or a conditional on R version) via

theorem 1 provides identification of the APE when the outcome equation includes nonlinear

functions of X or interactions with covariates Z1. This is an elementary point, but we

mention it for clarity. Suppose for example that Y = B0 + B1X + B2XZ1. Then the APE

is given by E[B1] + E[B2] E[Z1], which can be obtained from estimates of E[B1], E[B2]

and E[Z1]. Alternatively, an analyst may be interested in the APE for some predetermined

value of z1, which would be given by E[B1] + E[B2]z1. If (2) contains nonlinear terms, e.g.

Y = B0+B1X+B2X
2, then an analyst may be more interested in reporting E[B1]+2 E[B2]x

as the APE when X is exogenously set to x. These quantities can all be obtained after

applying theorem 1.

If (2) is misspecified and instead Y = g(W,B) for some nonlinear function g, then

standard arguments imply that β̃(r) is the minimal mean-squared error linear approximation

to E[Y |W = w,R = r] = E[g(w,B)|W = w,R = r] = E[g(w,B)|R = r], using proposition

1. This latter quantity is what Blundell and Powell (2003) call the average structural function

at W = w, but conditional on R = r. The implication is that an otherwise consistent

estimator of βR will, under misspecification, still be consistent for an average of best linear

approximations to the average structural function, conditional on R ∈ R.

To see the benefit of Theorem 1 relative to 2SLS, suppose that I4 holds for Z ∈ {0, 1}, and

write X = h(0, V )+∆ ·Z, where ∆ = h(1, V )−h(0, V ) is a random variable representing the

distribution of instrument effects. Then the 2SLS estimand equals β2sls = E(B1∆)/E(∆), so

that β2sls−E(B1) = Cov(B1,∆)/E(∆). This bias depends on the direction and magnitude

of linear dependence between the treatment effect B1 and the instrument effect ∆. It also

depends on the magnitude of the average causal effect of Z on X, E(∆). The bias is generally

non-zero if ∆ is non-degenerate, in which case the 2SLS estimator is not consistent for the

APE.

Our analysis is related to work by Jun (2009), who studies a linear random coefficients

version of Chesher’s (2003) nonparametric model. Both papers maintain a first stage as-
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sumption similar to I2. Jun also observes that the linearity of his outcome equation allows

for discrete instruments. However, Jun requires the coefficients in the outcome equation

to all be determined by a single scalar unobservable, conditional on V . This type of co-

monotonicity restricts the dimension of unobserved heterogeneity in the outcome equation

to 1, conditional on V . In contrast, our outcome equation still allows for high dimensional

heterogeneity after conditioning on V . In particular, the joint distribution of our random

coefficients B can have full support on Rdw .

Theorem 1 complements a result by Florens et al. (2008). Those authors consider a model

with a single basic endogenous variable X and the outcome equation

Y = ϕ(X) +B0 +B1X +B2X
2 + · · ·+BKX

K ,

for some knownK, where ϕ is an unknown function, and (B0, . . . , BK) are random coefficients

that may be dependent withX. Except for ϕ, this outcome equation can be obtained from (2)

with basic endogenous variable X, and derived endogenous variables (X2, . . . , XK). The cost

of including the ϕ function is that Florens et al. (2008) require a continuous instrument—

see the step from equation 10 to the next line on page 1203. We do not include the ϕ

function, but are generally able to achieve identification of the average coefficients in the

polynomial outcome equation model so long as the distribution of Z has at least K + 1

support points. Florens et al. (2008) also maintain I2 and I4, but in place of I5 they impose

a “measurable separability” condition that is somewhat high-level. As those authors discuss,

their measurable separability condition may fail if the first stage equation is not continuous

in V . Theorem 1 does not require such continuity. This also allows for the support of X

conditional on Z to be disjoint.

Among the maintained assumptions for theorem 1, I2 is generally the most controver-

sial. While it is more general than the specifications of Heckman and Vytlacil (1998) and

Wooldridge (1997, 2003, 2008), which impose a homogeneous causal effect of Z on X, it does
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restrict the basic endogenous variables to be continuous and limits the unobserved hetero-

geneity in their first stage equations to have dimension one. One-dimensional unobservable

heterogeneity of the sort in I2 can be interpreted as “rank invariance” (Doksum 1974) in the

causal effect of Z on each basic component of X. Rank invariance means that the ordinal

ranking of any two agents in terms of any component of Xk (k ≤ db) would be the same if

both agents received the same realization of Z, for any realization of Z. See Heckman, Smith,

and Clements (1997), Chernozhukov and Hansen (2005) and Torgovitsky (2015) for further

discussions of rank invariance. While one-dimensional heterogeneity is restrictive, there are

few alternatives in the literature that allow for high-dimensional heterogeneity in both the

outcome and first stage equations while still attaining point identification of a broadly in-

terpretable parameter. One such example is Masten (2012), who allows for linear random

coefficients in both the outcome and first stage equations. His results require a continuous

instrument with small support.

In addition to E[B], we can also identify what Florens et al. (2008) refer to as the “average

effect of the treatment on the treated.”

Theorem 2. Let X̃ ≡ (X1, . . . , Xdb). Under Assumptions I, the “average effect of the

treatment on the treated,” E[B | X̃ = x], is point identified for any x ∈ supp(X̃) such that

{(
FX1|Z(x1|z), . . . , FXdb

|Z(xdb|z)
)

: z ∈ supp(Z|X̃ = x)
}
⊆ R. (4)

Proof of theorem 2. From the proof of theorem 1, β(r) ≡ E[B | R = r] is identified for
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all r ∈ R. By iterated expectations, the definition of R, and proposition 1, we have

E[B | X̃ = x] = ER|X̃

[
E
(
B | X̃ = x,R

)
| X̃ = x

]

= EZ|X̃

[
E
(
B | X̃ = x,R = (FX1|Z(x1|Z), . . . , FXdb

|Z(xdb|Z))
)
| X̃ = x

]

= EZ|X̃

[
E
(
B | R = (FX1|Z(x1|Z), . . . , FXdb

|Z(xdb|Z))
)
| X̃ = x

]

= EZ|X̃

[
β
(

(FX1|Z(x1|Z), . . . , FXdb
|Z(xdb|Z))

)
| X̃ = x

]
,

which is identified since (FX1|Z(x1|z), . . . , FXdb
|Z(xdb|z)) ∈ R for all z ∈ supp(Z|X̃ = x).

Q.E.D.

Condition (4) in theorem 2 holds trivially if R = [0, 1]db . To interpret (4) when R is

a strict subset of [0, 1]db , suppose for simplicity that db = 1. Then (4) requires that if

x = QX|Z(r|z) for some z ∈ supp(Z|X̃ = x), then r ∈ R, so that β(r) is identified. In the

simple model (1), a sufficient condition for (4) is Var[FX|Z(x|Z)] > 0. To see this, suppose

z and z′ are such that r ≡ FX|Z(x|z) > FX|Z(x|z′) ≡ r′. Then QX|Z(r|z′) > x ≥ QX|Z(r|z)

and hence r ∈ R. The strict inequality follows by FX|Z(x|z′) < r since X is continuous. The

weak inequality follows by r = FX|Z(x|z) and the definition of the quantile. A symmetric

argument shows that r′ ∈ R as well. For example, in figure 1, x0 = QX|Z(.8|0) = QX|Z(.6|1)

with β(r) identified at both r = 0.6 and r′ = 0.8. Hence we have that E(B1|X = x0) =

β(0.6) P(Z = 1|X = x0) + β(0.8) P(Z = 0|X = x0) is point identified.

The average effect of the treatment on the treated provides one way of exploring het-

erogeneity in treatment effects. A truly constant treatment effect would yield a function

E[B | X̃ = x] which is constant over x. An increasing function would indicate positive cor-

relation between received treatment and the coefficients, while a decreasing function would
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indicate negative correlation between received treatment and the coefficients. Indeed, if

R = [0, 1]db then E[B | X̃ = x] is identified for all x ∈ supp(X̃) and hence the correlations

E[BjXk] = E[E(Bj | X̃)Xk] are also identified for k = 1, . . . , db and any j.

It is also possible to identify moments of the distribution of B other than the mean. For

example, (1) implies that Y 2 = B2
0 + 2B0B1X + B2

1X
2. If Z has three or more points of

support, then applying theorem 1 to Y 2 provides identification of E[B2
0 |R ∈ R], E[B2

1 |R ∈ R]

and E[B0B1|R ∈ R]. Combining these parameters with E[B0|R ∈ R] and E[B1|R ∈ R]

provides identification of all conditional second moments of the vector B = (B0, B1)
′. In

principle, this argument could be continued to identify higher moments of B as well.

4. Estimation

We conclude by briefly sketching a sample analog estimator of the APE based on theorem 1.

Our working paper (Masten and Torgovitsky 2014) contains more details on implementation

and asymptotic theory. The estimator is essentially an average of ordinary linear regressions,

each run conditional on a realization of a control function, and so it shares similarities with

the control function approaches of, for example, Heckman and Robb (1985), Blundell and

Powell (2004), Imbens and Newey (2009), Rothe (2009), Jun (2009), Torgovitsky (2013), and

Hoderlein and Sherman (2015). For simplicity, suppose there is only one basic endogenous

variable (db = 1) denoted by X, although there may be any number of known exogenous

and derived endogenous variables Z. Let {(Yi, Xi, Zi)}ni=1 be an i.i.d. sample of (Y,X,Z).

There are three steps to computing the estimator. First, construct estimates R̂i of Ri ≡

FX|Z(Xi|Zi) by replacing FX|Z with a consistent estimator. If Z has high dimension, this can

be done by modeling QX|Z through linear quantile regression and inverting—see our working

paper for more details. Second, estimate β(r) ≡ E[B | R = r] by a smoothed sample analog

of its expression in theorem 1, that is,

β̂(r) ≡

(
1

n

n∑
i=1

k̂hi (r)WiW
′
i

)−1(
1

n

n∑
i=1

k̂hi (r)WiYi

)
,

12



where k̂hi (r) ≡ h−1K((R̂i − r)/h) are weights constructed through an ordinary second-order

kernel function K with bandwidth parameter h that tends to 0 asymptotically. Third, esti-

mate βR ≡ E[B | R ∈ R] by averaging the second stage estimator, β̂R ≡ λ(R)−1
∫
R β̂(r) dr,

where λ(R) is the Lebesgue measure of R ⊆ [0, 1], e.g., λ(R) = .4 if R = [0.2, 0.6]. In our

working paper, we establish relatively weak low-level conditions under which
√
n(β̂R − βR)

is asymptotically normal. Its limiting variance is complicated, but the percentile bootstrap

can be used for inference. A Stata module for implementing this estimator is available on

our websites.
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Figure 1: Consider the simple CRC model (1), and suppose that Z ∈ {0, 1}. The figure

plots the quantile functions of X given Z, QX|Z(·|z), for z = 0 and 1. Conditional on

R = 0.8, X assumes two values, x0 ≡ QX|Z(.8|0) and x1 ≡ QX|Z(.8|1), depending on the

realization of Z. Since Z ⊥⊥B | {R = 0.8}, a mean regression of Y on X conditional on

R = 0.8 identifies the means of the intercept and slope coefficients, E[B0 | R = 0.8] and

E[B1 | R = 0.8]. In this plot, the relevance condition I5 holds for almost every r ∈ (0, 1),

since the conditional quantile functions intersect only at r = 0.3. Hence, E[B | R = r] is

identified for all r ∈ (0, 1). Averaging then identifies E[B]. Note that Z can have a non-

monotonic effect on X. In this figure, its effect is positive for units with large R (above

R = 0.3) and negative for units with small R.
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