Erratum for "Identification of Treatment Effects under Conditional Partial Dependence"

Matthew A. Masten and Alexandre Poirier

February 13, 2023

Proposition 5 on page 329 provides bounds for $\mathbb{P}\left(Y_{x}=1 \mid W=w\right)$. While the provided bounds (see the expressions for $\left(\underline{P}_{x}^{c}(1 \mid w), \bar{P}_{x}^{c}(1 \mid w)\right)$ on page 329$)$ are correct bounds for $\mathbb{P}\left(Y_{x}=1 \mid W=\right.$ $w)$, they are in fact conservative and hence not sharp. In this erratum we provide new expressions for $\left(\underline{P}_{x}^{c}(1 \mid w), \bar{P}_{x}^{c}(1 \mid w)\right)$ that are narrower than the original bounds, and show that these new bounds are sharp in the sense originally stated in our Proposition 5.

New Bounds Expressions

Let

$$
\begin{aligned}
& \bar{P}_{x}^{c}(y \mid w)=\min \left\{\frac{p_{y \mid x, w} p_{x \mid w}}{p_{x \mid w}-c} \mathbb{1}\left(p_{x \mid w}>c\right)+\mathbb{1}\left(p_{x \mid w} \leq c\right), \frac{p_{y \mid x, w} p_{x \mid w}+c}{p_{x \mid w}+c}, p_{y \mid x, w} p_{x \mid w}+1-p_{x \mid w}\right\} \\
& \underline{P}_{x}^{c}(y \mid w)=\max \left\{\frac{p_{y \mid x, w} p_{x \mid w}}{p_{x \mid w}+c}, \frac{p_{y \mid x, w} p_{x \mid w}-c}{p_{x \mid w}-c} \mathbb{1}\left(p_{x \mid w}>c\right), p_{y \mid x, w} p_{x \mid w}\right\} .
\end{aligned}
$$

Set $y=1$ to replace the original bounds on page 329. Note that these news bounds are weakly narrower than the original ones.

Sharpness Proof

We now show that these new narrower bounds are sharp. To do so, we amend the proof of Proposition 5. The proof is split into two parts: (1) showing that $\left[\underline{P}_{x}^{c}(1 \mid w), \bar{P}_{x}^{c}(1 \mid w)\right]$ are bounds for $\mathbb{P}\left(Y_{x}=1 \mid W=w\right)$, and (2) showing sharpness of the interior of this interval.

Modification of Part (1)

The original proof shows that the original expressions are bounds for $\mathbb{P}\left(Y_{x}=1 \mid W=w\right)$. To show the new expressions are also bounds for $\mathbb{P}\left(Y_{x}=1 \mid W=w\right)$, it is sufficient to show that

$$
\mathbb{P}\left(Y_{x}=1 \mid W=w\right) \in\left[\frac{p_{1 \mid x, w} p_{x \mid w}-c}{p_{x \mid w}-c} \mathbb{1}\left(p_{x \mid w}>c\right), \frac{p_{1 \mid x, w} p_{x \mid w}+c}{p_{x \mid w}+c}\right] .
$$

This is obtained as follows:

$$
\begin{aligned}
\mathbb{P}\left(Y_{x}=1 \mid W=w\right) & =1-\mathbb{P}\left(Y_{x}=0 \mid W=w\right) \\
& =1-\frac{p_{0 \mid x, w} p_{x \mid w}}{\mathbb{P}\left(X=x \mid Y_{x}=0, W=w\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \in\left[1-\frac{p_{0 \mid x, w} p_{x \mid w}}{p_{x \mid w}-c} \mathbb{1}\left(p_{x \mid w}>c\right)-\mathbb{1}\left(p_{x \mid w} \leq c\right), 1-\frac{p_{0 \mid x, w} p_{x \mid w}}{p_{x \mid w}+c}\right] \\
& =\left[\frac{p_{1 \mid x, w} p_{x \mid w}-c}{p_{x \mid w}-c} \mathbb{1}\left(p_{x \mid w}>c\right), \frac{p_{1 \mid x, w} p_{x \mid w}+c}{p_{x \mid w}+c}\right] .
\end{aligned}
$$

The third line follows by conditional c-dependence.

Modification of Part (2)

To amend the sharpness proof, we show that

$$
\mathbb{P}\left(X=1 \mid Y_{x}=y, W=w\right) \in\left[p_{1 \mid w}-c, p_{1 \mid w}+c\right]
$$

when

$$
\mathbb{P}\left(Y_{x}=1 \mid x=1-x, W=1\right)=\frac{p^{*}-p_{1 \mid x, w} p_{x \mid w}}{1-p_{x \mid w}}
$$

for any $p^{*} \in\left(\underline{P}_{x}^{c}(1 \mid w), \bar{P}_{x}^{c}(1 \mid w)\right)$ and for $x, y \in\{0,1\}$. The following replaces "Proof of 3." on pages 349-350.

From Bayes' rule we have

$$
\mathbb{P}\left(X=x \mid Y_{x}=y, W=w\right)=\frac{p_{y \mid x, w} p_{x \mid w}}{\mathbb{P}\left(Y_{x}=y \mid W=w\right)} \in\left[\frac{p_{y \mid x, w} p_{x \mid w}}{\bar{P}_{x}^{c}(y \mid w)}, \frac{p_{y \mid x, w} p_{x \mid w}}{\underline{P}_{x}^{c}(y \mid w)}\right]
$$

The inclusion follows by validity of the bounds, from part (1). Substituting in the new expressions for $\left(\underline{P}_{x}^{c}(y \mid w), \bar{P}_{x}^{c}(y \mid w)\right)$ we find

$$
\begin{aligned}
\frac{p_{y \mid x, w} p_{x \mid w}}{\underline{P}_{x}^{c}(y \mid w)} & =\frac{p_{y \mid x, w} p_{x \mid w}}{\max \left\{\frac{p_{y \mid x, w} p_{x \mid w}}{p_{x \mid w}+c}, \frac{p_{y \mid x, w} p_{x \mid w}-c}{p_{x \mid w}-c} \mathbb{1}\left(p_{x \mid w}>c\right), p_{y \mid x, w} p_{x \mid w}\right\}} \\
& \leq p_{y \mid x, w} p_{x \mid w} / \frac{p_{y \mid x, w} p_{x \mid w}}{p_{x \mid w}+c} \\
& =p_{x \mid w}+c
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{p_{y \mid x, w} p_{x \mid w}}{\bar{P}_{x}^{c}(y \mid w)} & =\frac{p_{y \mid x, w} p_{x \mid w}}{\min \left\{\frac{p_{y \mid x, w} p_{x \mid w}}{p_{x \mid w}-c} \mathbb{1}\left(p_{x \mid w}>c\right)+\mathbb{1}\left(p_{x \mid w} \leq c\right), \frac{p_{y \mid x, w} p_{x \mid w}+c}{p_{x \mid w}+c}, p_{y \mid x, w} p_{x \mid w}+1-p_{x \mid w}\right\}} \\
& \geq \frac{p_{y \mid x, w} p_{x \mid w}}{\frac{p_{y \mid x, w} p_{x \mid w}}{p_{x \mid w}-c} \mathbb{1}\left(p_{x \mid w}>c\right)+\mathbb{1}\left(p_{x \mid w} \leq c\right)} \\
& =\left(p_{x \mid w}-c\right) \mathbb{1}\left(p_{x \mid w}>c\right)+p_{y \mid x, w} p_{x \mid w} \mathbb{1}\left(p_{x \mid w} \leq c\right) \\
& \geq p_{x \mid w}-c .
\end{aligned}
$$

Therefore $\mathbb{P}\left(X=x \mid Y_{x}=y, W=w\right) \in\left[p_{x \mid w}-c, p_{x \mid w}+c\right]$ for $x, y \in\{0,1\}$. This implies that

$$
\mathbb{P}\left(X=1 \mid Y_{1}=y, W=w\right) \in\left[p_{1 \mid w}-c, p_{1 \mid w}+c\right]
$$

and that

$$
\begin{aligned}
\mathbb{P}\left(X=1 \mid Y_{0}=y, W=w\right) & =1-\mathbb{P}\left(X=0 \mid Y_{0}=y, W=w\right) \\
& \in\left[1-\left(p_{0 \mid w}+c\right), 1-\left(p_{0 \mid w}-c\right)\right] \\
& =\left[p_{1 \mid w}-c, p_{1 \mid w}+c\right]
\end{aligned}
$$

for $y \in\{0,1\}$.

